Cohomology of vector fields on a complex manifold

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some vector fields on a riemannian manifold with semi-symmetric metric connection

In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.

متن کامل

On the Leibniz cohomology of vector fields

I. M. Gelfand and D. B. Fuks have studied the cohomology of the Lie algebra of vector fields on a manifold. In this article, we generalize their main tools to compute the Leibniz cohomology, by extending the two spectral sequences associated to the diagonal and the order filtration. In particular, we determine some new generators for the diagonal Leibniz cohomology of the Lie algebra of vector ...

متن کامل

Manifold Learning of Vector Fields

In this paper, vector field learning is proposed as a new application of manifold learning to vector field. We also provide a learning framework to extract significant features from vector data. Vector data containing position, direction and magnitude information is different from common point data only containing position information. The algorithm of locally linear embedding (LLE) is extended...

متن کامل

Jacobi-Type Vector Fields on Kaehler Manifold

In this paper, we use the notion of Jacobi-type vector fields introduced in [5] to obtain a necessary and sufficient condition for a Kaehler manifold to be isometric to the complex space form (Cn, J, 〈, 〉), where J is the complex structure and 〈, 〉 is the Euclidean metric on Cn. Mathematics Subject Classification: 53C20, 53B21

متن کامل

Conformal vector fields and conformal transformations on a Riemannian manifold

In this paper first it is proved that if ξ is a nontrivial closed conformal vector field on an n-dimensional compact Riemannian manifold (M, g) with constant scalar curvature S satisfying S ≤ λ1(n − 1), λ1 being first nonzero eigenvalue of the Laplacian operator ∆ on M and Ricci curvature in direction of a certain vector field is non-negative, then M is isometric to the n-sphere S(c), where S =...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1974

ISSN: 0386-2194

DOI: 10.3792/pja/1195518750